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Abstract

The Hodrick-Prescott (HP) filter is a commonly used tool in macroeconomics to obtain the

HP filter trend of a macroeconomic variable. In macroeconomics, the difference between the

original series and this trend is called the “cyclical component”. In this paper, we derive the

autocovariance function and the spectrum of the cyclical component of a series that consists of

a constant, a linear time trend, a unit root process, and a weakly stationary process. We show

that the autocovariance function of the cyclical component of such a series depends on (1) the

autocovariance of the innovations of the unit root process; (2) the autocovariance of the weakly

stationary process and; (3) a component of the weights of the HP filter that is important in the

middle of a large sample. The result for the spectrum of the cyclical component matches with

earlier results in the literature that were obtained by using an approximate approach. Lastly,

we derive the cross-covariance function and the cross-spectrum of the cyclical components of

two cointegrated series.
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1 Introduction

The HP filter is a commonly used tool in macroeconomics to separate the long-run movements

and the short-run shocks of macroeconomic variables. The HP filter has a long history that goes

back to Whittaker (1922) and Leser (1961) before it was introduced to Economics by Hodrick and

Prescott (1997).

The HP filter smoothes the original series {yt}Tt=1 by minimizing

T∑
t=1

(yt − τt)2 + λ

T−1∑
t=2

(τt+1 − 2τt + τt−1)
2, (1)

over τ = (τ1, τ2, . . . , τT )′ ∈ RT . λ is a (nonnegative) smoothing parameter that is typically chosen

to equal 1600 for quarterly data. There is a unique solution to this minimization problem which is

denoted as τ̂ = (τ̂T1, τ̂T2, . . . , τ̂TT )′. The cyclical component is defined as the residual ĉTt = yt− τ̂Tt

for t = 1, 2, . . . , T . Note that throughout this paper we use “trend” and “cyclical component” of

a series to refer to τ̂Tt and ĉTt, respectively. Therefore, the term “cyclical component” is used to

describe the residual obtained after applying the HP filter; this terminology is potentially confusing,

but used thoughout in the literature on the HP filter. We refer to the periodic fluctuations of

macroeconomic variables as “cycles”; these should be distinguished from the cyclical components.

The HP filter is a special case of a general method for smoothing a time series that was suggested

by Whittaker (1922). Leser (1961, p. 92, Equation (2)) also considered the HP filter.

The comovements of the cycles of various macroeconomic variables are studied extensively in

the real business cycle literature. In this literature, the comovements of the cycles of variables are

studied by analyzing the autocorrelation and cross-correlation functions of the cyclical components.

Cogley and Nason (1995) compared the autocorrelation and cross-correlation functions of trend-

stationary and difference-stationary processes and their cyclical components. Cogley and Nason

(1995) contains no derivation of the autocorrelation or cross-correlation functions of the cyclical

components of those processes, and instead they used simulations. In this paper, we derive the

autocovariance function of the cyclical component of a data generating process that equals the

sum of an intercept, a deterministic linear time trend, a unit root process, and a weakly stationary

process. Also, we derive the cross-covariance function of the cyclical components of two cointegrated

series.

Spectral analysis is a useful method for studying variables in terms of the duration of fluctua-

tions, where long-run (short-run) fluctuations correspond to the low (high) frequency components.

Hannan (1963), Howrey (1968), Phillips (1991), Corbae et al. (2002), Christiano and Fitzgerald

(2003), Granger and Hatanaka (2015), and Müller and Watson (2018) are examples of papers that

studied the spectral analysis of time series. Cogley and Nason (1995) analyzed the spectrum and
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the cross-spectrum of the cyclical component of trend-stationary and difference-stationary series

to provide evidence that the HP filter has different impacts on trend-stationary and difference-

stationary series. King and Rebelo (1993) also considered the HP filter in the frequency domain.

Baxter and King (1999) compared the spectra that result from using the HP filter with the spectra

that result from using the band pass filter.

The common approach of King and Rebelo (1993), Cogley and Nason (1995), Baxter and King

(1999), and Christiano and Fitzgerald (2003) is to take the first-order condition of the minimization

problem in Equation (1) as holds for t = 3, .., T − 2 as the definition of the HP filter; that is, this

equation is assumed to hold for all t ∈ Z. This first order condition is

yt = (λB̄2 − 4λB̄ + (1 + 6λ)− 4λB + λB2)τ̂Tt

= (1 + λ|1−B|4)τ̂Tt (2)

for t = 3, 4, . . . , T −2, where B and B̄ denote the backward and the forward operators, respectively.

Equation (2) defines a two-sided weighted average representation that these authors use to analyze

the behavior of the filter in the frequency domain. In Theorem 2, we rigorously derive the spectrum

of the cyclical component of a process that equals the sum of an intercept, a deterministic linear

time trend, a unit root process, and a weakly stationary process.

In this paper, we use the exact weights of the HP filter to derive our results. The weighted

average representation of the trend of a series that is obtained by the HP filter is

τ̂Tt =

T∑
s=1

wTtsys, (3)

where wTts is the weight at the time point s with respect to the time point t for given sample size

T . The weights also depend on λ, but this dependence is suppressed in the notation for brevity.

The explicit formula of the weights is provided in Theorem 1 of de Jong and Sakarya (2016). In this

paper, we first characterize the autocovariance function of the cyclical component of a series that

includes an intercept, a linear time trend, a unit root process, and a stationary process by using the

weighted average representation above. Then we derive the spectrum of the cyclical component of

the same process. The cross-covariance function and cross-spectrum of the cyclical components of

two cointegrated series are derived by using the same approach as in the first two results. Appendix

A in the supplementary material provides a list of results that we use from de Jong and Sakarya

(2016). Throughout the paper, we assume that λ is fixed with respect to T .1

Recently, the HP filter has received renewed attention; for example, Phillips and Jin (2015,

2020), de Jong and Sakarya (2016), Cornea-Madeira (2017), Hamilton (2018), Sakarya and de Jong

(2020), and Phillips and Shi (2020). Phillips and Jin (2015, 2020) developed a limit theory for

the HP filter when it is applied to stochastic trends, trend-stationary processes, and time series
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processes with trend breaks. They concluded that the HP filter is not capable of removing the

stochastic trend of time series processes under certain conditions. de Jong and Sakarya (2016)

and Cornea-Madeira (2017) derived the explicit formula for the weights of the HP filter. By

using this formula for the weights of the HP filter, de Jong and Sakarya (2016) showed that the

cyclical component of a unit root process is weakly dependent in the middle of a large sample

under certain assumptions. Those assumptions are different from those in Phillips and Jin (2015,

2020). Also, de Jong and Sakarya (2016) considered adjusting the smoothing parameter for the

data frequency. Sakarya and de Jong (2020) derived a property of the HP filter: the HP filter

calculates the cyclical component of a series as the HP filter trend of the fourth difference of the

series, except for the first and last two observations, for which different formulas are needed. By

using this property, they characterized the effects of structural breaks on the cyclical components.

They derived the cyclical components of deterministic polynomial trends, deterministic exponential

trends and integrated processes that are integrated up to order 4. They used the latter result to

establish the weak dependence properties of the cyclical component of a series that is integrated

up to order 4. Both de Jong and Sakarya (2016) and Sakarya and de Jong (2020) derived the weak

dependence properties of the cyclical component of integrated processes while the current paper

derives the autocovariance function and spectrum of the cyclical component of a process that is

described in Assumption 1.

Hamilton (2018) listed several reasons why the HP filter should not be used to detrend macroe-

conomic variables. Those reasons are, rephrasing Phillips and Shi (2020) p. 30, (1) the HP filter

introduces spurious fluctuations; (2) the filter is not appropriate for unit root processes; (3) the

cyclical component is a function of past, current and future observations; and (4) an AR(4) regres-

sion provides a better alternative. Recently, Phillips and Shi (2020) proposed an improved version

of the HP filter which eliminates some of the drawbacks of the HP filter that Hamilton (2018) listed.

Phillips and Shi (2020) showed that their “boosted” HP filter is capable of asymptotically removing

unit roots and higher order polynomial trends with or without structural breaks. The simulation

studies in Phillips and Shi (2020) illustrate that the cyclical component that is calculated by their

“boosted” HP filter is robust to the initial choice of λ.

The organization of the paper is as follows. In Subsection 2.1, we derive the autocovariance

function and the spectrum of the cyclical component of a series which is the sum of a constant,

a linear time trend, a unit root process, and a weakly stationary process. In Subsection 2.2, we

derive the cross-covariance and the cross-spectrum of two cointegrated series, and we conclude the

paper in Section 3.
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2 Main Results

2.1 The autocovariance function and the spectrum of the cyclical component

In this section, we derive the autocovariance function and the spectrum of the cyclical component

of a series which is the sum of a linear trend, a unit root process, and a weakly stationary series.

The autocovariance function of a series {zTt}Tt=1 is defined as

γz(k) = lim
T→∞

T−1
T∑

t=k+1

cov(zTt, zT,t−k), (4)

where k ∈ Z and cov(·, ·) is the population covariance. The spectrum of {zTt}Tt=1 is defined as

Iz(ω) = (2π)−1
∞∑

k=−∞
γz(k)e−iωk, (5)

where ω ∈ [−π, π]. The spectrum of {zTt}Tt=1 exists if
∑∞

k=−∞ |γz(k)| < ∞. The above defini-

tions are in the triangular array context because they will be used for the HP trend and cyclical

component, which are triangular arrays.

In macroeconomics, it is common practice to characterize the real economy by the autocorrela-

tion and the cross-correlation of the cyclical component of macroeconomic variables (e.g., Kydland

and Prescott, 1982; Cooley and Prescott, 1995; Müller and Watson, 2018). It has been a great

concern how and to what extent the HP filter alters the autocovariance and the cross-covariance of

the variables since the characterization of the real economy might be dramatically influenced by the

filter. For example, King and Rebelo (1993) compared the autocorrelation and the cross-correlation

of simulated series and the autocorrelation and the cross-correlation of their cyclical components

to provide evidence that the HP filter alters the second moments of the original series (see Table 2

of King and Rebelo, 1993). In our first result, we derive the autocovariance function of the cyclical

component of a process that is described in Assumption 1.

Assumption 1.

yt = α1 + α2t+ α3zt + ut, (6)

where zt =
∑t

j=1 εj, {εj}∞j=−∞ and {ut}∞t=−∞ are weakly stationary series with the autocovari-

ance functions γε(k) and γu(k) for k ∈ Z, respectively. Additionally,
∑∞

k=−∞ |γε(k)| < ∞,∑∞
k=−∞ |γu(k)| <∞, and cov(ut, εj) = 0 for any t, j ∈ Z.

Theorem 1. Define ĉTt = yt − τ̂Tt =
∑T

s=1(I(t = s)−wTts)ys. Assume Assumption 1 holds. Then

for k ∈ Z

γc(k) =γu(k)− 2

∞∑
j=−∞

γu(j)fλ(j + k) +

∞∑
h=−∞

∞∑
j=−∞

γu(h)fλ(h+ j)fλ(k + j) (7)
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+ α2
3

∞∑
m=0

m∑
h=−∞

γε(h− k)(
∞∑

s=m+1

fλ(s))(
∞∑

l=m+1

fλ(l − h))

− α2
3

∞∑
m=0

∞∑
h=m+1

γε(h− k)(
∞∑

s=m+1

fλ(s))(
m∑

l=−∞
fλ(l − h))

− α2
3

−1∑
m=−∞

m∑
h=−∞

γε(h− k)(
m∑

s=−∞
fλ(s))(

∞∑
l=m+1

fλ(l − h))

+ α2
3

−1∑
m=−∞

∞∑
h=m+1

γε(h− k)(
m∑

s=−∞
fλ(s))(

m∑
l=−∞

fλ(l − h)),

where for m ∈ Z

fλ(m) =

∫ 1

0

cos(πrm)

1 + 16λ sin(πr/2)4
dr.

The proof of this result and all other proofs for this paper can be found in Appendix B in the

supplementary material.

The autocovariance function of ĉTt depends on the autocovariance functions of ut and εt. The

intercept and the deterministic linear time trend are fully absorbed into τ̂Tt, as discussed in Section

6.1 of Sakarya and de Jong (2020). If we add a higher order deterministic polynomial trend to yt

(y∗t = yt + dt and dt = tq for t = 1, 2, . . . , T and q = 2, 3, . . . ), then the cyclical component of y∗t

would be

ĉ∗Tt = yt + dt −
T∑
s=1

wTts(ys + ds) = yt −
T∑
s=1

wTtsys + dt −
T∑
s=1

wTtsds

where dt−
∑T

s=1wTtsds is the cyclical component of dt. Note that the cyclical component of dt is not

zero, as shown in Theorem 6 of Sakarya and de Jong (2020). Since the cyclical component of dt is

nonrandom, it will not appear in the autocovariance function of ĉ∗Tt. Therefore, the autocovariance

function of ĉ∗Tt will be the same as the expression in Equation (7).

The function fλ(·) in Equation (7) arises as follows. The cyclical component is a weighted

average of yt, and the weights of the HP filter have eight components, as defined in Theorem 1 of

de Jong and Sakarya (2016): wTts = fTλ(t− s) +
∑8

p=2w
p
T ts. A detailed description of the weights

and their properties are provided in Appendix A in the supplemental material. The last seven

components of the weights are important only in the beginning and at the end of a sample. The

function fλ(m) that appears in the result of Theorem 1 is the pointwise limit of fTλ(m) as T →∞.

In Equation (7), the first three terms of the autocovariance function are the autocovariance

function of ĉTt obtained from a series that is weakly stationary. Below, this special case is presented

as a corollary.

Corollary 1. Assume Assumption 1 holds and let yt = ut. Then for k ∈ Z

γc(k) = γy(k)− 2
∞∑

j=−∞
γy(j)fλ(j + k) +

∞∑
h=−∞

∞∑
j=−∞

γy(h)fλ(h+ j)fλ(k + j)
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and

γτ (k) =

∞∑
h=−∞

∞∑
j=−∞

γy(h)fλ(h+ j)fλ(k + j).

The result of Corollary 1 shows that the autocovariance function of ĉTt differs from the au-

tocovariance function of yt by some weighted average of the autocovariance function of yt. Note

that if λ → ∞, γc(k) → γy(k) pointwise in k because fλ(m) → 0 for all m since | cos(πrm)| ≤ 1,

(1 + 16λ sin(πr/2)4)−1 ≤ 1 and limλ→∞(1 + 16λ sin(πr/2)4)−1 = 0. King and Rebelo (1993) and

Cogley and Nason (1995) raised the issue that the second moment of the original series and the

second moment of the associated cyclical component are different, and provided simulation results

that illustrate this. The fact that these second moments are different follows directly from Corollary

1 because γc(0) 6= γy(0).

When we assume ut is a white noise process, the results for γc(k) and γτ (k) can be further

simplified to

γc(k) = σ2(I(k = 0)− 2fλ(k) +
∞∑

j=−∞
fλ(j)fλ(j + k)) (8)

and

γτ (k) = σ2
∞∑

j=−∞
fλ(j)fλ(k + j). (9)

This implies that the cyclical component of a white noise process is correlated, i.e., γc(k) 6= 0 for

some k ≥ 0, whereas γu(k) = 0 for all k 6= 0. Figure 1 provides an illustration of autocovariance

functions γu(k), γτ (k), and γc(k) for k = 0, 1, . . . , 20 when ut is a white noise process with σ2 = 1

and λ = 6.25.

Next, we consider another special case of Theorem 1 in which the original series is a unit root

process.

Corollary 2. Assume Assumption 1 holds and let yt = zt. Then for k ∈ Z

γc(k) =

∞∑
m=0

m∑
h=−∞

γε(h− k)(

∞∑
s=m+1

fλ(s))(

∞∑
l=m+1

fλ(l − h))

−
∞∑
m=0

∞∑
h=m+1

γε(h− k)(

∞∑
s=m+1

fλ(s))(

m∑
l=−∞

fλ(l − h))

−
−1∑

m=−∞

m∑
h=−∞

γε(h− k)(

m∑
s=−∞

fλ(s))(

∞∑
l=m+1

fλ(l − h))

+

−1∑
m=−∞

∞∑
h=m+1

γε(h− k)(

m∑
s=−∞

fλ(s))(

m∑
l=−∞

fλ(l − h)).

Corollary 2 shows that when we calculate the correlogram of the cyclical component of a unit

root process, we will find a correlogram that is reminiscent of a correlated weakly stationary process.
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Figure 1: The plots of γu(k) = σ2I(k = 0) and the functions in Equations (8) and (9) for σ2 = 1

and λ = 6.25.

It follows from Corollary 2 that even if the innovations of the unit root process are white noise,

the correlogram of the cyclical component of the unit root process will resemble the correlogram

of a correlated weakly stationary process and will not resemble the correlogram of a white noise

process.

Next, we use the result of Theorem 1 to derive the spectrum of the cyclical component of yt.

Theorem 2. Assume Assumption 1 holds. Then
∑∞

k=−∞ |γc(k)| <∞ and the spectrum of ĉTt is

Ic(ω) = (1− hλ(ω))2Iu(ω) + α2
3(1− hλ(ω))2(2 sin(ω/2))−2Iε(ω),

where hλ(ω) = (1 + 16λ sin(ω/2)4)−1 for ω ∈ [−π, π].

The above result shows that the HP filter suppresses the low-frequency component of the original

series, because 1− hλ(ω) ≈ 0 when ω is near zero. Therefore, Ic(ω) ≈ 0 when ω is near zero.

Figure 2 graphs (1−hλ(ω))2 for various values of the smoothing parameter that were suggested

in the literature for different data frequencies.2 Since hλ(ω) is decreasing in λ, the HP filter allows

more of the low frequencies into the cyclical component as λ takes higher values.

Below, we consider two special cases of the spectrum that is given in Theorem 2.

Corollary 3. Assume Assumption 1 holds and let yt = ut. Then
∑∞

k=−∞ |γc(k)| <∞,
∑∞

k=−∞ |γτ (k)| <

∞,

Ic(ω) = (1− hλ(ω))2Iy(ω)
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Figure 2: The function (1− hλ(ω))2 for different values of λ.

and

Iτ (ω) = hλ(ω)2Iy(ω)

for ω ∈ [−π, π].

Unlike in Theorem 2, in Corollary 3 we can derive the spectrum of the trend because yt = ut is

a weakly stationary process. The results of Corollary 3 imply that as λ → ∞, Ic(ω) → Iy(ω) and

Iτ (ω) → 0 pointwise in ω. This suggests that the spectrum of the HP filter trend approaches the

spectrum of a constant when λ is sufficiently large because Equation (5) implies that if Iτ (ω) ≈ 0,

then γτ (k) ≈ 0 for all k ∈ Z. This observation corresponds to the findings of de Jong and Sakarya

(2016, p. 312) in the time domain, i.e., limλ→∞ τ̂Tt = T−1
∑T

t=1 yt.

As a special case of Corollary 3, for the case where yt = ut is white noise, we find

Ic(ω) = σ2(1− hλ(ω))2 (10)

and

Iτ (ω) = σ2hλ(ω)2.

From the above equations, it follows that the spectrum of the cyclical component of a white noise

process is not constant. Therefore, when confronted with the spectrum of Equation (10), a re-

searcher might conclude that the cyclical component has cycles. The fact that filtering can suggest
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cycles is well-known since the work of Kuznets (1929) and Slutzky (1937). Cogley and Nason (1995)

used simulations to investigate how the HP filter suggests cycles in the setting of trend-stationary

and difference-stationary processes. Figure 2 graphs the spectrum of the cyclical component of a

white noise process with σ2 = 1 for different values of λ.

Next, we discuss the spectrum of the cyclical component of a unit root process.

Corollary 4. Assume Assumption 1 holds and let yt = zt. Then
∑∞

k=−∞ |γc(k)| <∞ and

Ic(ω) = (1− hλ(ω))2(2 sin(ω/2))−2Iε(ω)

for ω ∈ [−π, π].

It has been noted in the literature by Cogley and Nason (1995) and Kaiser and Maravall

(1999) that the HP filter is generally applied to macroeconomic variables that are nonstationary.

Therefore, it is of great interest to derive the spectrum of a cyclical component obtained from a

unit root process. Cogley and Nason (1995) and Kaiser and Maravall (1999) took the expression in

Equation (2) as the definition of the HP filter and along these lines conjectured the above result.

The result of Corollary 4 implies that as λ → ∞, Ic(ω) → (2 sin(ω/2))−2Iε(ω) pointwise in ω

everywhere except ω = 0.

2.2 The cross-covariance function and cross-spectrum of the cyclical compo-

nents

In this section, we derive the cross-covariance function and the cross-spectrum of the cyclical

components of two cointegrated series. As stated in Engle and Granger (1987), cointegrating

relationships exist among macroeconomic variables such as consumption and income, short-term

and long-term interest rates, and nominal GNP and M2. Cogley and Nason (1995) considered the

cross-spectrum of the cyclical components of two cointegrated series.

Assumption 2. Let {y1t}Tt=1 and {y2t}Tt=1 be cointegrated series such that

y1t = φy2t + ut,

where y2t =
∑t

j=1 εj, {εj}∞j=−∞, {ut}∞t=−∞ are weakly stationary processes with cov(ut, εj) = 0 for

any t, j ∈ Z, and
∑∞

k=−∞ |γε(k)| <∞.

Theorem 3. Define ĉiT t =
∑T

s=1(I(t = s) − wTts(λi))yis where wTts(λi) denotes the weights of

the HP filter that is calculated by smoothing parameter λi for i = 1, 2, and the cross-covariance

function of ĉ1Tt and ĉ2T,t−k is

γ1,2c,λ1,λ2(k) = lim
T→∞

T−1
T∑

t=k+1

cov(ĉ1Tt, ĉ
2
T,t−k),
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for k ∈ Z. Assume Assumption 2 holds. Then for k ∈ Z

γ1,2c,λ1,λ2(k) =φ

∞∑
m=0

m∑
h=−∞

γε(h− k)(

∞∑
s=m+1

fλ1(s))(

∞∑
l=m+1

fλ2(l − h))

− φ
∞∑
m=0

∞∑
h=m+1

γε(h− k)(
∞∑

s=m+1

fλ1(s))(
m∑

l=−∞
fλ2(l − h))

− φ
−1∑

m=−∞

m∑
h=−∞

γε(h− k)(

m∑
s=−∞

fλ1(s))(

∞∑
l=m+1

fλ2(l − h))

+ φ

−1∑
m=−∞

∞∑
h=m+1

γε(h− k)(

m∑
s=−∞

fλ1(s))(

m∑
l=−∞

fλ2(l − h)).

Note that the HP filter is applied to y1t and y2t with different smoothing parameters (i.e. λ1

and λ2) to keep the result as general as possible. Next, we present the result for the cross-spectrum

of two cointegrated series by using the cross-covariance result above.

Theorem 4. The cross-spectrum of ĉ1Tt and ĉ2T,t−k is defined as

I1,2c,λ1,λ2(ω) = (2π)−1
∞∑

k=−∞
γ1,2c,λ1,λ2(k)e−iωk

for ω ∈ [−π, π]. Assume Assumption 2 holds. Then

I1,2c,λ1,λ2(ω) = φ(1− hλ1(ω))(1− hλ2(ω))(2 sin(ω/2))−2Iε(ω). (11)

In the setting of correlation properties of series, Hodrick and Prescott (1997) stated that “As

the comovement results were not particularly sensitive to the value of the smoothing parameter

λ selected. . . We do think it is important that all series be filtered using the same parameter λ.”

However, for the cross-spectrum, the suggestion that I1,2c,λ1,λ2(ω) resembles I1,2c,λ1,λ1(ω) for different

values of λ1 and λ2 is not correct, as can be deduced from Theorem 4.

It is easy to observe from Equation (11) that

I1,2c,λ1,λ2(ω) = ((1− hλ1(ω))/(1− hλ2(ω)))I1,2c,λ1,λ1(ω).

Using elementary calculus, it is not hard to show that for λ1 < λ2 and ω ∈ [−π, π]

1− hλ1(ω)

1− hλ2(ω)
∈
[
λ1
λ2
,
λ1(1 + 16λ2)

λ2(1 + 16λ1)

]
,

and these bounds are attained on for ω = 0 and ω = ±π, respectively. Therefore, taking λ1/λ2 as

a scale factor, the two spectra will look similar as long as (1 + 16λ2)/(1 + 16λ1) is close to 1. This

quantity will equal 1.594 for (λ1, λ2) = (6.25, 10), which is the best case we can ever encounter in

practice, and equals 159.01 for (λ1, λ2) = (10, 1600). Therefore, we should not extrapolate Hodrick

and Prescott (1997)’s comment to suggest that the cross-spectrum will not be sensitive to the choice

of smoothing parameters.
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3 Conclusion

We derive the autocovariance function and the spectrum of the cyclical component of a process that

is the sum of an intercept, a linear time trend, a unit root process and a weakly stationary process.

We use the formula for the weights of the HP filter from de Jong and Sakarya (2016) to obtain our

results. This is the first mathematically rigorous discussion of the autocovariance function and the

spectrum of the cyclical component in the literature. We also derive the cross-covariance function

and the cross-spectrum of the cyclical component of two cointegrated series. We show that the

cross-spectrum of two cointegrated series depends on the cointegration coefficient, the smoothing

parameter values and the spectrum of the innovations of the unit root process.

Notes

1The results of Phillips and Jin (2020) are based on the assumption that λ grows with T .
2λ = 6.25, 1600, 129600 are used for annual, quarterly, and monthly data, respectively. They are suggested by

Hodrick and Prescott (1997), Ravn and Uhlig (2002), de Jong and Sakarya (2016). The Matlab files that generate

Figures 2 can be found at https://neslihansakarya.weebly.com/uploads/5/9/5/5/59554687/on_the_website.zip.
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